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A method of calculating the rate of nucleation in phase transformations in binary 

mixtures is proposed. 

Of special interest among the processes of new-phase nucleation are nucleation processes 
in multicomponent systems, which are encountered much more often than phase transformations 
in pure materials. Such processes include the condensation of gas mixtures and the formation 
of aerosols, fogs, and smogs. 

Nucleation in a multicomponent system is represented as a series of elementary events 
of addition and cleavage of molecules of all the components; the composition of the nucleating 
material is determined here not only by the composition of the mixture but also by the mobil- 
ity of molecules of different types, and also by the mutual solubility of the components in 
the new phase. Growth of such a nucleus may be described, as for a single-component system, 
by kinetic equations of Fokker--Planck type: 

0 . [ (~ ,  t) ---- - -  div J. ( 1 )  
Ot 

The s i z e  d i s t r i b u t i o n  f u n c t i o n  o f  the  n u c l e i  f ( ~ ,  t )  i s  a f u n c t i o n  o f  the  t ime and the  
m u l t i d i m e n s i o n a l  v e c t o r  

g = ( n .  n~, . . . ,  n~), (2 )  

determining the component composition of the nucleus. The number n i determines the number 
of molecules of the i-th component in the nucleus. Thus, each nucleus is characterized by a 
definite set of numbers n i and corresponds to a definite point in m-dimensional space. At 
each point of this space, the flux vector of the nucleus is defined: 

J = - -  Rvf - -  Rfv6. (3) 
The solution of this problem for a two-component system was first obtained in [2]. Under 
the assumption that matrix R is diagonal and the dependence of the kinetic coefficients on 
the dimension of the nucleus may be neglected, Eq. (i) for the two-component system A + B 
transforms to the following form in the case of an established (steady) flow of nuclei: 

O~r § RB O~p a~p ao  ocp oo  = o. (4 )  
RA O-~A Orl-"-'~B - -  RA On A On A R B On B On B 

The d i s t r i b u t i o n  f u n c t i o n  must s a t i s f y  the  bounda ry  c o n d i t i o n s  

(hA, nB)--~ 0 a, n A "-~ rt B--~ cx~, 
(5) 

fp (hA, tZB) ~ 1 as n A .q- n e ~ O, 

f o l l o w i n g  from the  p h y s i c a l  meaning of  the  f u n c t i o n  [ 2 ] .  

The most  s i g n i f i c a n t  f a c t o r  which must be t a k e n  i n t o  a c c o u n t  i n  s o l v i n g  the  g i v e n  p r o b -  
lem i s  t h a t ,  c l o s e  to  the  p o i n t  ~* = (n 'A ,  n 'B)  d e t e r m i n e d  by the  e q u a t i o n s  

OG (rtA, riB) OG (rtA, riB) 
= O, ---- O, (6) 

On A On B 

the surface G = G(nA, nB) is a hyperbolic paraboloid, i.e., ~* is a saddle point of the sur- 
face. 
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If the total flux of nuclei is defined as 

Jtot=  .f [J• (7) 
L 

where L i s  an a r b i t r a r y  curve i n t e r s e c t i n g  a l l  the c u r r e n t  l i n e s  o f  the v e c t o r  J (which,  i n  
p a r t i c u l a r ,  may a lso  pass th rough the p o i n t  r  the g r e a t e s t  c o n t r i b u t i o n  to the i n t e g r a l  i n  
Eq. (7) w i l l  be made by the r e g i o n  close to t h i s  p o i n t .  The method of  s o l u t i o n  proposed i n  
[2] and then developed i n  [3, 4] i s  as f o l l o w s .  I t  i s  assumed t h a t ,  i n  some r e g i o n  c lose  to 
the saddle  p o i n t  ~*, the c u r r e n t  l i n e s  o f  the v e c t o r  J may be regarded as p a r a l l e l .  Then, 
from p h y s i c a l  c o n s i d e r a t i o n s ,  the d i r e c t i o n  o f  the v e c t o r  J a t  the saddle  p o i n t  i s  chosen so 
as to s i m p l i f y  Eq. (4 ) .  Thus, f o r  example, i n  [ 2 ] ,  the d i r e c t i o n  o f  J co inc ides w i t h  the 
direction of most rapid descent of the surface G at the saddle point, while in [3, 4] this 
choice was shown to be invalid and it was proven that the direction must be chosen not only 
on the basis of the curvature of surface G but also so as to take account of the kinetic coef- 

ficients RA and RB. 

In the present work, another approach to the solution of this problem is proposed, with 

no need to make any assumptions regarding the direction of the vector J. 

The flux in Eq. (7) is found from Eq. (4),by means of a series of transformations. The 

following change of variables is introduced: n A -- nA* = u RC~A , n B -- nB*= v R/~ this gives 

the result 

O~ + 0~.____$__~ _ OG O~ . a6 o~ O. (8) 
Ou2 Ov ~ Ou Ou Ov Ov 

Expanding G(u, v) in the vicinity of the saddle point 

6 (u, v) = 6* + 6,u~ + 6~v ~ + 2G,~uv, 

1 O~G 1 
- -  _ _  - - - - _  R ADv, , Gn -2 Ou2 

1 02(3 1 
G~2 = - '2  Ov ~. 2 RBD~2' 

612=I_1_ . O2__._G__G " 1 ]/-~A RB D,2, (9) 
2 OuOv 2 

where D n ----02G/One, D~ = alO/On~, Dt~-----O~O/anAOnB , the quadratic form in Eq. (9) may be reduced 

to canonical form by rotating the coordinate system 

G - - G *  : - - p x  2. --}- qg~, p > O ,  q >  O, (10) 

where --p and q are eigenvalues of the matrix g: 

g = \ 6~1 Gi~ " 

( i i)  P------ 2 - -  4 

6~1 § 622 V / (611 -+- 6~2) 2 2 
q : 2 - -  4 + 6 , 2 .  

Equation (8) is invariant relative to rotations of the coordinate system; therefore, it takes 

the following form: 

0~~9 + 0~-----~-}-2px O(p aep = O. (12) 
Ox - - - - (  099 -Ox - -  2qy Oy 

It may be shown that the total flux in the new coordinate system is 

+~ 0q) 
,/tot == - -  ]/"R---~B y fo( x, Y) ~ db', ( 13 )  

where fo(x, y) = fo(x = 0, y = 0)exp(-qy = + px=). 
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The value of the integral in Eq. (13) may be obtained from Eq. (12), by introducing the 
function 

+~ 

%(x)= ~ ~(x, y)exp(--qy2)dy. (14) 

It is a solution of the equation 

d2-----~%. -+-2px d% = O, 
dx 2 dx (15) 

which is easily obtained if Eq. (12) is multiplied by exp (--qy=) and integrated, term by 
term, with respect to y. The general solution of Eq. (15) is 

x 

% (x) = C 1 .i" exp ( - -  pr2) dr q- Ce. (16) 
0 

The c o n s t a n t s  Cz and C2 a r e  found u s i n g  t h e  boundary  c o n d i t i o n s  i n  Eq. ( 5 ) ,  r e w r i t t e n  i n  t he  
form 

q~(x, y)--~ 1, x - + - - o o ;  
(17) ~(x, y)-+O, x-~+ oo, 

since x § --~ corresponds to n A + n B § 0, and x § +~ corresponds to n A + n B § +~. As in [2, 
4], it is assumed here that the boundary conditions in Eq. (5) are sufficiently well satis- 
fied in some vicinity of the saddle point in which Eq. (9) holds. Substituting Eq. (17) into 
Eq. (14), it is found that 

z(_oo)___ V ~-, u(+ oo)=0. 

Thus, Cz = --~p/q, C2 = (i/2)/~q, and the final expression for the nucleation rate is 
obtained using Eqs. (13) and (14): 

, , dE = ]/~ARe [~ / ~ ]F V (Du --rD22)~+ rD~2 -- D n --rD2~ 
ltot -= --  l/ RARsfo(nA, n*) exp (px~) --~x F q = [: F RARBv (Dn--rm22)2-l- rD~2 -}- Dn-t- rD22 

An explicit dependence of the nucleation rate on the kinetic and thermodynamic parame- 
ters of the system is obtained. Equation (18) has a clear physical meaning, since the quan- 
tities p and q appearing there are inversely proportional to the square root of the charac- 
teristic dimensions of the saddle-point region of surface G. The maximum variation in G in 
this region is i; i.e., the variation in the work of nucleus formation in this region is no 
greater than the magnitude of the thermal energy. 

NOTATION 

f(~, t), distribution function of the nuclei, determining the number of nuclei with com- 

( RA RAB~ 
position ~ per unit volume at time t; R = matrix of kinetic coefficients deter- 

R~A Rs ) ' 
mining  t he  p r o b a b i l i t y  o f  a d d i t i o n  o f  a s p e c i f i e d  t y p e  o f  m o l e c u l e  to  the  n u c l e u s ;  G = G(nA, 
nB) ,  d i m e n s i o n l e s s  r a t i o  o f  t he  work o f  f o r m a t i o n  o f  n u c l e u s  o f  c o m p o s i t i o n  (nA, nB) to  t h e  
temperature, expressed in energy units; fo = const exp(--O), equilibrium distribution func- 
tion; ~ = f/fo, dimensionless distribution function. 

1. 

2. 

3. 

LITERATURE CITED 

Ya. B. Zel'dovich, "Theory of new-phase formation, Cavitation," Zh. Eksp. Teor. Fiz., 
12, No. 11-12, 525-538 (1942). 
H. Reiss, "The kinetics of phase transitions in binary systems," J. Chem. Phys., 18, 
No. 6, 840-848 (1950). 

11 D. Stauffer, "Kinetic theory of two-component ( heteromolecular ') nucleation and con- 
densation," J. Aerosol. Sci., 7, No. 5, 319-328 (1976). 

898 



. K. Binder and D. Stauffer, "Statistical theory of nucleation, condensation and coagula- 
tion," Adv. Phys., 25, 343-396 (1976). 
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We will investigate the numerical calculations and the experimental study of homo- 
geneous nitrogen condensation in a hypersonic nozzle at M ~ 20. 

Saturation conditions are often achieved when gases expand in thenozzles of hypersonic 
aerodynamic equipment [1-4]. If this occurs at a sufficiently low pressure (for nitrogen 
and air, less than 4-10 -~ bar) and the impurity content of the gas is low, then significant 
supercooling of the flow occurs [1-3]. It then becomes important to determine the range of 
braking parameters at which gas flow in the nozzle occurs without the condensation process 
having a significant effect. Theoretical prediction of conditions for the onset of conden- 
sation presents a number of difficulties in principle, so that, as a rule, it is necessary 
to commence from experimental results. As has been shown in [3-7], in interpreting the 
experimental results obtained, fairly good results may be obtained by classical homogeneous- 
condensation theory, if we specially select the coefficients in the expressions which extra- 
polate the dependences of the condensed-phase parameters to the temperature range below the 
triple point. In the present study numerical calculations will be performed on the basis of 
classical theory to generalize experimental data on nitrogen condensation in a hypersonic 
nozzle [8]. The results of the study show that when the dependence of condensed-phase sur- 
face tension coefficient on droplet radius is considered, classical homogeneous-condensation 
theory can be used to predict conditions for the commencement of condensation in apparatus 
with high value breaking parameters. 

Experimental data on nitrogen condensation in a hypersonic tube were obtained for the 
following conical nozzle parameters: critical-section diameter 1 mm, half-aperture angle 
9 ~ , output-section diameter 220 mm. The braking pressure was measured behind the direct 
shock wave in the working portion of the device while the temperature was decreased in the 
gas forechamber as the pressure therein was maintained constant. As the braking temperature 
To was decreased, the braking pressure behind the shock wave P~ first remained constant at 
its isentropic level, after which, at some braking temperature Toc it began to decrease and 
then behaved irregularly with further decrease in To. As careful measurements [i, 2] reveal, 
the static pressure in the working section P begins to increase with reduction in To, with 
deviation from the isentropic value of P commencing at approximately the same temperature 
Toc. In comparing the numerical calculation results to experimental data it is assumed 
that deviation of P and P~ from their isentropic values occur at one and the same braking 
temperature Toc. Nonsteady-state processes in the experiments may be neglected, since the 
characteristic time for change in To comprised ~i0 sec, while the characteristic time for 
flow establishment in the nozzle was ~i0 -3 sec. 

The value of Toc was measured for three values of braking pressure Po. For variant No. 
1 Po = 106.75 bar, Toc = I143~ M = 22.8; No. 2, Po = 71.92, Toc = 943~ M = 22.2; No. 3, 
Po = 51.66, Toc = 900~ M = 21.8. M is the Mach number in the working section of the device 
in the absence of condensation, which can be calculated from the measured ratio P~/Po and 
expressions for isentropic nitrogen flow. The gas pressure in the forechamber was monitored 
by an 0.16 accuracy class manometer, and remained constant within 0.81 bar. The braking tem- 
perature To was measured by a PP-I thermocouple 0.i mm in diameter with systemic error no 
sreater than 1%. The braking pressure at the compression discontinuity was measured by a 
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